这也是一个很好的问题。实际上人工智能从一开始就非常重视应用和产业发展,当时也一直在摸索人工智能产业的发展道路应该是什么样子,同样也是经过六七十年的发展,不断地积累经验。最初时候的发展有点像按照信息产业发展的路子走,我们能看到信息产业的发展是非常快而且非常顺利的,中间基本上没有过停顿。它的发展路径,拿计算机来讲,首先是做机器、做硬件等体系结构,经过了三代的发展,由一台机器好多人用发展到一台机器一个人用,再到后来的以手机为代表的移动端,它的发展是非常迅速的,产业的发展也非常顺利。从硬件到系统软件,再到后来成千上万的应用软件的开发,每一个硬件、每一个软件都能支撑起大量的企业。之所以会这样,在于软硬件具有通用性,具有很大的市场,从而推动了信息产业的快速发展。
人工智能一开始发展时,也有一部分人想沿着信息产业的发展道路走,如七八十年代美国的Lisp机、日本的五代机,都是想做出来一个人工智能的硬件或者机器,在此之上发展软件及应用,但是后来都失败了,没能形成产业,原因就在于人工智能没有理论基础的支持,我们不知道智能机器应该是什么样子的。后来大家被迫选择了一条路,现在看来这条路也还是可以的。如上面说到的人工智能所拥有的两类算法,基于数据驱动的算法和基于知识驱动的算法,我们现在的产业就不是从硬件出发,而是从算法出发,根据算法来定义硬件或者定义软件,所以不是硬件在先而是算法在先。或者我们不去定义硬件,而是利用现有的硬件来进行应用,且这个应用是必须针对行业的应用,场景的应用,这一点和信息产业不同。
深度学习出现之后,紧接着大家就用深度学习的算法去定义一些硬件,如我们现在看到的所谓AI芯片,它实际上是由深度学习定义出来的硬件,我们也可以用算法开发出来的各种各样的计算平台去应用,现在看起来,企业发展还是很快的。基于知识算法的系统,比如已经出现的各种专家系统,它一定是跟领域紧密相连的,因此它就存在很大的局限性;基于数据驱动的算法开发出来的产品要比基于知识驱动开发出来的产品要多,但它本身也有一个非常大的弱点,也由算法带来,限制了它的应用场景。要解决算法的问题,唯一的办法就是开展基础研究去克服缺陷,如果我们有办法克服它,那么产业就会得到高速的发展。